Revised HLMS: A useful algorithm for fuzzy measure identification
نویسندگان
چکیده
An important limitation of fuzzy integrals for information fusion is the exponential growth of coefficients for an increasing number of information sources. To overcome this problem a variety of fuzzy measure identification algorithms has been proposed. HLMS is a simple gradient-based algorithm for fuzzy measure identification which suffers from some convergence problems. In this paper, two proposals for HLMS convergence improvement are presented, a modified formula for coefficients update and new policy for monotonicity check. A comprehensive experimental work shows that these proposals indeed contribute to HLMS convergence, accuracy and robustness.
منابع مشابه
On the convergence of HLMS Algorithm
In multicriteria decision making, the study of attribute contributions is crucial to attain correct decisions. Fuzzy measures allow a complete description of the joint behavior of attribute subsets. However, the determination of fuzzy measures is often hard. A common way to identify fuzzy measures is HLMS (Heuristic Least Mean Squares) algorithm. In this paper, the convergence of the HLMS algor...
متن کاملA new similarity measure between type-2 fuzzy numbers and fuzzy risk analysis
In this paper, we present a revised similarity measure based onChen-and-Chen's similarity measure for fuzzy risk analysis. The revisedsimilarity measure uses the corrected formulae to calculate the centre ofgravity points, therefore it is more effective than the Chen-and-Chen'smethod. The revised similarity measure can overcome the drawbacks of theexisting methods. We have also proposed a new ...
متن کاملMEAN-ABSOLUTE DEVIATION PORTFOLIO SELECTION MODEL WITH FUZZY RETURNS
In this paper, we consider portfolio selection problem in which security returns are regarded as fuzzy variables rather than random variables. We first introduce a concept of absolute deviation for fuzzy variables and prove some useful properties, which imply that absolute deviation may be used to measure risk well. Then we propose two mean-absolute deviation models by defining risk as abs...
متن کاملSolving fully fuzzy Linear Programming Problem using Breaking Points
Abstract In this paper we have investigated a fuzzy linear programming problem with fuzzy quantities which are LR triangular fuzzy numbers. The given linear programming problem is rearranged according to the satisfactory level of constraints using breaking point method. By considering the constraints, the arranged problem has been investigated for all optimal solutions connected with satisf...
متن کاملA New Fuzzy Method for Assessing Six Sigma Measures
Six-Sigma has some measures which measure performance characteristics related to a process. In most of the traditional methods, exact estimation is used to assess these measures and to utilize them in practice. In this paper, to estimate some of these measures, including Defects per Million Opportunities (DPMO), Defects per Opportunity (DPO), Defects per unit (DPU) and Yield, a new algorithm ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information Fusion
دوره 14 شماره
صفحات -
تاریخ انتشار 2013